저번에는 DenseNet 논문을 보고 개념을 정리했습니다.
https://github.com/andreasveit/densenet-pytorch
해당 github에 존재하는 코드를 바탕으로 진행했습니다.
class BasicBlock(nn.Module):
# 일반적인 denseblock(torch.cat을 통해 input과 output을 붙여준다)
# Batchnorm -> ReLU -> 3x3 Conv2d
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
return torch.cat([x, out], 1)
위 코드는 기본적인 densenet block을 만들어줍니다. input으로 들어온 내용에 block을 거치고 나온 결과를 붙여준 값을 return 합니다. block은 Batchnorm -> ReLU -> 3x3 Conv2d 과정을 거칩니다.
class BottleneckBlock(nn.Module):
# bottleneck을 적용한 denseblock
# Batchnorm -> ReLU -> 1x1 Conv2d -> Batchnorm -> ReLU -> 3x3 Conv2d
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(BottleneckBlock, self).__init__()
inter_planes = out_planes * 4
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, inter_planes, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(inter_planes)
self.conv2 = nn.Conv2d(inter_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
out = self.conv2(self.relu(self.bn2(out)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
return torch.cat([x, out], 1)
위 코드는 bottleneck 구조를 적용한 densenet block입니다. 논문으로 치면 DenseNet-B로 표현할 수 있습니다. Batchnorm -> ReLU -> 1x1 Conv2d -> Batchnorm -> ReLU -> 3x3 Conv2d 과정을 거칩니다.
class TransitionBlock(nn.Module):
# deseblock 사이에 존재하는 transition block
# Batchnorm -> ReLU -> 1x1 Conv2d -> average pool2d
def __init__(self, in_planes, out_planes, dropRate=0.0):
super(TransitionBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1,
padding=0, bias=False)
self.droprate = dropRate
def forward(self, x):
out = self.conv1(self.relu(self.bn1(x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, inplace=False, training=self.training)
return F.avg_pool2d(out, 2)
위 코드는 denseblock 사이에 들어가는 transition layer를 구현한 코드입니다. Batchnorm -> ReLU -> 1x1 Conv2d -> average pool2d 과정을 거칩니다. 여기서 pool2d를 통해 feature map이 downsampling 됩니다.
class DenseBlock(nn.Module):
# denseblock 생성
def __init__(self, nb_layers, in_planes, growth_rate, block, dropRate=0.0):
super(DenseBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, growth_rate, nb_layers, dropRate)
def _make_layer(self, block, in_planes, growth_rate, nb_layers, dropRate):
layers = []
for i in range(nb_layers):
layers.append(block(in_planes+i*growth_rate, growth_rate, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class DenseNet3(nn.Module):
# 2번의 transition block을 거쳐 3가지의 dense block을 만든다
def __init__(self, depth, num_classes, growth_rate=12,
reduction=0.5, bottleneck=True, dropRate=0.0):
super(DenseNet3, self).__init__()
in_planes = 2 * growth_rate
n = (depth - 4) / 3
if bottleneck == True:
n = n/2
block = BottleneckBlock
else:
block = BasicBlock
n = int(n)
# 1st conv before any dense block
self.conv1 = nn.Conv2d(3, in_planes, kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block에 들어가기 전에 Conv2d 진행
# 1st block
# parameter에 맞춰 block 생성
self.block1 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
# transition block에 들어갈 채널 수를 정의하고 넣어준다
self.trans1 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate)
in_planes = int(math.floor(in_planes*reduction))
# 2nd block
# parameter에 맞춰 block 생성
self.block2 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
# transition block에 들어갈 채널 수를 정의하고 넣어준다
self.trans2 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate)
in_planes = int(math.floor(in_planes*reduction))
# 3rd block
self.block3 = DenseBlock(n, in_planes, growth_rate, block, dropRate)
in_planes = int(in_planes+n*growth_rate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(in_planes, num_classes)
self.in_planes = in_planes
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.block1(out))
out = self.trans2(self.block2(out))
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.in_planes)
return self.fc(out)
DenseBlock을 parameter에 맞춰 생성해주고 DenseBlock 3개를 포함한 구조를 만드는 클래스입니다.
이 코드를 이용해 CIFAR 10에 대해 10개의 이미지로 분류하는 학습을 진행할 수 있습니다.
if __name__ == '__main__':
batch_size=64
learning_rate = 0.1
depth = 100
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True, transform=transform_train),
batch_size=batch_size, shuffle=True
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transform_test),
batch_size=batch_size, shuffle=True
)
# 데이터 불러오기
model = densenet.DenseNet3(depth, 10, growth_rate=12, reduction=0.5, bottleneck=True, dropRate=0.0)
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
model = model.to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate,
momentum=0.9, nesterov=True, weight_decay=1e-4)
train(train_loader, model, criterion, optimizer, 30)
# test(test_loader, model,criterion, 30)
이와 같이 데이터를 불러오고 densenet모델을 생성하는 코드를 작성했습니다. CrossEntropyLoss, SGD를 사용해 학습을 진행했습니다.
def train(train_loader, model, criterion, optimizer, epoch):
model.train()
for i, (input, target) in enumerate(train_loader):
target = target.to(device)
input = input.to(device)
output = model(input)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i % 20 == 0):
print("epoch %d , step %d loss : %f" % (epoch, i, loss.data))
torch.save(model, PATH + 'model.pt')
이와 같이 train 메서드를 정의해주고 학습이 끝난 후 저장을 했습니다.
def test(test_loader, model, criterion, epoch):
PATH = './weights/'
model = torch.load(PATH + 'model.pt')
model.eval()
correct = 0
for i, (input, target) in enumerate(test_loader):
target = target.to(device)
input = input.to(device)
output = model(input)
loss = criterion(output, target)
_, pred = torch.max(output.data, 1)
correct += (pred == target).sum().item()
print("Accuracy : %f" % (epoch, 100.0 * correct/len(test_loader.dataset)))
이와 같이 저장된 데이터를 불러 test를 진행할 수 있습니다.
'연구실 공부' 카테고리의 다른 글
UNet++ 코드 (0) | 2022.03.30 |
---|---|
[논문] Unet++ : A Nested U-Net Architecture for Medical Image Segmentation (0) | 2022.03.28 |
[논문] Densely Connected Convolutional Networks (0) | 2022.03.23 |
[논문]Improving neural networks by preventing co-adaptation of feature detectors (0) | 2022.03.21 |
정규화(Normalization) (0) | 2022.03.14 |