본문 바로가기

연구실 공부

CycleGAN 논문 코드

728x90

CycleGAN 논문을 보고 좀 더 이해하기 위해 저자들이 제공한 코드를 살펴봤습니다.

https://arxiv.org/pdf/1703.10593.pdf

Cycle GAN 논문

 

import torch
import itertools
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks


class CycleGANModel(BaseModel):
    """
    This class implements the CycleGAN model, for learning image-to-image translation without paired data.

    The model training requires '--dataset_mode unaligned' dataset.
    By default, it uses a '--netG resnet_9blocks' ResNet generator,
    a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
    and a least-square GANs objective ('--gan_mode lsgan').

    CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
    """
    @staticmethod
    def modify_commandline_options(parser, is_train=True):
        """Add new dataset-specific options, and rewrite default values for existing options.

        Parameters:
            parser          -- original option parser
            is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.

        Returns:
            the modified parser.

        For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses.
        A (source domain), B (target domain).
        Generators: G_A: A -> B; G_B: B -> A.
        Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A.
        Forward cycle loss:  lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper)
        Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper)
        Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper)
        Dropout is not used in the original CycleGAN paper.
        """
        parser.set_defaults(no_dropout=True)  # default CycleGAN did not use dropout
        if is_train:
            parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)')
            parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)')
            parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1')

        return parser

    def __init__(self, opt):
        """Initialize the CycleGAN class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        BaseModel.__init__(self, opt)
        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        visual_names_A = ['real_A', 'fake_B', 'rec_A']
        visual_names_B = ['real_B', 'fake_A', 'rec_B']
        if self.isTrain and self.opt.lambda_identity > 0.0:  # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
            visual_names_A.append('idt_B')
            visual_names_B.append('idt_A')

        self.visual_names = visual_names_A + visual_names_B  # combine visualizations for A and B
        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
        else:  # during test time, only load Gs
            self.model_names = ['G_A', 'G_B']

        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:
            if opt.lambda_identity > 0.0:  # only works when input and output images have the same number of channels
                assert(opt.input_nc == opt.output_nc)
            self.fake_A_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            self.fake_B_pool = ImagePool(opt.pool_size)  # create image buffer to store previously generated images
            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()
            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)

    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): include the data itself and its metadata information.

        The option 'direction' can be used to swap domain A and domain B.
        """
        AtoB = self.opt.direction == 'AtoB'
        self.real_A = input['A' if AtoB else 'B'].to(self.device)
        self.real_B = input['B' if AtoB else 'A'].to(self.device)
        self.image_paths = input['A_paths' if AtoB else 'B_paths']

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake_B = self.netG_A(self.real_A)  # G_A(A)
        self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))
        self.fake_A = self.netG_B(self.real_B)  # G_B(B)
        self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))

    def backward_D_basic(self, netD, real, fake):
        """Calculate GAN loss for the discriminator

        Parameters:
            netD (network)      -- the discriminator D
            real (tensor array) -- real images
            fake (tensor array) -- images generated by a generator

        Return the discriminator loss.
        We also call loss_D.backward() to calculate the gradients.
        """
        # Real
        pred_real = netD(real)
        loss_D_real = self.criterionGAN(pred_real, True)
        # Fake
        pred_fake = netD(fake.detach())
        loss_D_fake = self.criterionGAN(pred_fake, False)
        # Combined loss and calculate gradients
        loss_D = (loss_D_real + loss_D_fake) * 0.5
        loss_D.backward()
        return loss_D

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed: ||G_A(B) - B||
            self.idt_A = self.netG_A(self.real_B)
            self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
            self.idt_B = self.netG_B(self.real_A)
            self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A # rec_A = G_B(G_A(A))
        self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B # rec_B = G_A(G_B(B))
        # combined loss and calculate gradients
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
        self.loss_G.backward()

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()      # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad([self.netD_A, self.netD_B], False)  # Ds require no gradients when optimizing Gs
        self.optimizer_G.zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()             # calculate gradients for G_A and G_B
        self.optimizer_G.step()       # update G_A and G_B's weights
        # D_A and D_B
        self.set_requires_grad([self.netD_A, self.netD_B], True)
        self.optimizer_D.zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()      # calculate gradients for D_A
        self.backward_D_B()      # calculate graidents for D_B
        self.optimizer_D.step()  # update D_A and D_B's weights

 

저자들이 제공한 cycle_gan_model.py의 내용입니다.

이 중 forward 함수를 보면

 

    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        self.fake_B = self.netG_A(self.real_A)  # G_A(A)
        self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))
        self.fake_A = self.netG_B(self.real_B)  # G_B(B)
        self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))

 

이와 같이 되어 있습니다. 논문에서 말했듯이 generator 2개를 사용하는 것을 볼 수 있습니다. real image A를 generator A에 넣어 fake image B를 생성합니다. 그리고 논문에서 말했듯이 cycle을 도는 것을 볼 수 있습니다 fake image B를 generator B에 넣어 다시 image A에 속한 이미지(rec_A)를 생성하려는 것을 볼 수 있습니다. 반대로 real image B를 generator B에 넣어 fake image A를 생성합니다. 이 이미지를 사용해 cycle을 돌아 rec_B를 생성합니다.

 

    def backward_D_A(self):
        """Calculate GAN loss for discriminator D_A"""
        fake_B = self.fake_B_pool.query(self.fake_B)
        self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)

    def backward_D_B(self):
        """Calculate GAN loss for discriminator D_B"""
        fake_A = self.fake_A_pool.query(self.fake_A)
        self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

 

discriminator도 2가지를 사용하는 모습을 볼 수 있습니다.

이제 제가 제일 논문을 보면서 직접 확인하고 싶었던 부분입니다.

 

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed: ||G_A(B) - B||
            self.idt_A = self.netG_A(self.real_B)
            self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt 
            self.idt_B = self.netG_B(self.real_A)
            self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A 
        self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B 
        # combined loss and calculate gradients
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
        self.loss_G.backward()

 

순차적으로 보겠습니다. lambda_idt가 0보다 크다면 idt_A, loss_idt_A, idt_B, loss_idt_B를 따로 정의하고 아닌 경우 loss_idt_A와 loss_idt_B를 0으로 정의합니다.

 

loss_idt_A와 loss_idt_B가 논문에서 추가한 identity loss입니다. 이 loss가 없는 model의 경우 이미지 변경을 잘 하지만 color 등 몇몇 특징들은 유지되지 않는 경우가 존재했습니다. 그래서 제약을 걸기 위해 loss를 추가했다고 합니다.

generator A에 real_B를 넣어 idt_A를 생성합니다. generator A는 B 영역에 속한 이미지를 만드는 역할을 합니다. 이러한 generator에 real_B를 넣어 생성한 이미지는 더 B 영역에 속하고 real_B와 같은 이미지를 만들어내도록 제약을 걸어주는 모습입니다. loss_idt_B의 경우는 반대로 적용한 모습입니다.

 

loss_G_A와 loss_G_B는 간단하게 이해할 수 있습니다. loss_G_A의 경우 generator A가 real A를 받아 생성한 이미지를 discriminator가 판단한 값에 대한 loss를 의미합니다. loss_G_B는 그 반대의 경우입니다.

loss_cycle_A, loss_cycle_B는 논문에서 말한 cycle consistency을 이용한 loss입니다. cycle을 돌아 생성된 이미지 rec A와 real A에 대 L1 loss를 적용해 두 이미지의 오차를 구해줍니다.

 

최종 loss_G는 위에서 언급한 모든 loss들을 더해 구해줍니다. 이와 같은 방식으로 cycle gan model을 구현하는 것을 볼 수 있습니다.